Scientific Library of Tomsk State University

   E-catalog        

Image from Google Jackets
Normal view MARC view

Решение обратной задачи кинематики манипулятора С. А. Братчиков, Е. А. Абрамова, Ю. В. Федосов

By: Братчиков, Степан АртемьевичContributor(s): Абрамова, Евгения Александровна | Федосов, Юрий ВалерьевичMaterial type: ArticleArticleContent type: Текст Media type: электронный Other title: Solution of the inverse kinematics problem of the manipulator [Parallel title]Subject(s): манипуляторы | планирование траектории | аналитическое решение | обратная задача кинематики | обобщенные координатыGenre/Form: статьи в журналах Online resources: Click here to access online In: Вестник Томского государственного университета. Управление, вычислительная техника и информатика № 56. С. 4-11Abstract: Представлен и апробирован алгоритм аналитического решения обратной задачи кинематики для типовой антропоморфной структуры манипулятора, которая часто применяется на производствах. Приведены соот-ношения, которые позволяют преобразовать параметры задания в форме декартовых координат в обобщен-ные координаты манипулятора, они же – углы поворота звеньев манипулятора относительно друг друга. Эти соотношения легко могут быть реализованы в программе, вырабатывающей сигнал задания для двигателей манипулятора. There are a lot of methods for inverse kinematics problem of manipulator solution. But most of them include usage of transcen-dental equations, numerical methods, non-linear differential equations, and recursive calculations, which are very complicated for application in embedded systems. However, in real-time systems the speed and ease of algorithm are valued the most. These qualities are inherent for analytical solutions, which unequivocally connect the input coordinates of trajectory and generalized coordinates of kinematic scheme of manipulator, A.K.A angles of relative rotation of elements of manipulator. First, it is needed to solve the simple problem of identification of triangle angles, located in vertical plane. The sides of the triangle are known, as the dimensions of manipulator are given. After doing so, it is possible to use the principles of interplanar angle identi-fication to reach the last generalized coordinates. Also, the method of identifying the angle between two vectors is useful in these calculations. After calculation of the generalized coordinates according to the described method, it is needed to apply constraints on the signs of the values of these coordinates depending on the desired position since the expressions include absolute value functions and trigo-nometric functions, which are not unambiguous.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Библиогр.: 10 назв.

Представлен и апробирован алгоритм аналитического решения обратной задачи кинематики для типовой антропоморфной структуры манипулятора, которая часто применяется на производствах. Приведены соот-ношения, которые позволяют преобразовать параметры задания в форме декартовых координат в обобщен-ные координаты манипулятора, они же – углы поворота звеньев манипулятора относительно друг друга. Эти соотношения легко могут быть реализованы в программе, вырабатывающей сигнал задания для двигателей манипулятора. There are a lot of methods for inverse kinematics problem of manipulator solution. But most of them include usage of transcen-dental equations, numerical methods, non-linear differential equations, and recursive calculations, which are very complicated for application in embedded systems. However, in real-time systems the speed and ease of algorithm are valued the most. These qualities are inherent for analytical solutions, which unequivocally connect the input coordinates of trajectory and generalized coordinates of kinematic scheme of manipulator, A.K.A angles of relative rotation of elements of manipulator. First, it is needed to solve the simple problem of identification of triangle angles, located in vertical plane. The sides of the triangle are known, as the dimensions of manipulator are given. After doing so, it is possible to use the principles of interplanar angle identi-fication to reach the last generalized coordinates. Also, the method of identifying the angle between two vectors is useful in these calculations. After calculation of the generalized coordinates according to the described method, it is needed to apply constraints on the signs of the values of these coordinates depending on the desired position since the expressions include absolute value functions and trigo-nometric functions, which are not unambiguous.

There are no comments on this title.

to post a comment.