Scientific Library of Tomsk State University

   E-catalog        

Image from Google Jackets
Normal view MARC view

Quantum Many-Body Physics of Ultracold Molecules in Optical Lattices electronic resource Models and Simulation Methods / by Michael L. Wall.

By: Wall, Michael L [author.]Contributor(s): SpringerLink (Online service)Material type: TextTextSeries: Springer Theses, Recognizing Outstanding Ph.D. ResearchPublication details: Cham : Springer International Publishing : Imprint: Springer, 2015Description: XXX, 374 p. 68 illus., 43 illus. in color. online resourceContent type: text Media type: computer Carrier type: online resourceISBN: 9783319142524Subject(s): physics | Atoms | Matter | Phase transformations (Statistical physics) | Condensed materials | Condensed matter | Physics | Quantum Gases and Condensates | Numerical and Computational Physics | Atoms and Molecules in Strong Fields, Laser Matter InteractionDDC classification: 539 LOC classification: QC175.16.C6Online resources: Click here to access online
Contents:
Part I: Introduction -- General Introduction -- Models for Strongly Correlated Lattice Physics -- Part II: The Molecular Hubbard Hamiltonian -- Emergent Timescales in Entangled Quantum Dynamics of Ultracold Molecules in Optical Lattices -- Hyperfine Molecular Hubbard Hamiltonian -- Part III: The Fermi Resonance Hamiltonian -- Microscopic Model for Feshbach Interacting Fermions in an Optical Lattice with Arbitrary Scattering Length and Resonance Width -- Part IV: Matrix Product States -- Matrix Product States: Foundations -- Out-of-Equilibrium Dynamics with Matrix Product States -- The Infinite Size Variational Matrix Product State Algorithm -- Finite Temperature Matrix Product State Algorithms and Applications -- Part V: Open Source Code and Educational Materials -- Open Source Code Development -- Educational Materials -- Part VI: Conclusions and Appendices -- Conclusions and Suggestions for Future Research -- Appendix A: Documentation for ALPS V2.0 TEBD Code -- Appendix B: Educational Materials: A Gentle Introduction to Time Evolving Block Decimation (TEBD) -- Appendix C: Educational Materials: Introduction to MPS Algorithms.
In: Springer eBooksSummary: This thesis investigates ultracold molecules as a resource for novel quantum many-body physics, in particular by utilizing their rich internal structure and strong, long-range dipole-dipole interactions. In addition, numerical methods based on matrix product states are analyzed in detail, and general algorithms for investigating the static and dynamic properties of essentially arbitrary one-dimensional quantum many-body systems are put forth. Finally, this thesis covers open-source implementations of matrix product state algorithms, as well as educational material designed to aid in the use of understanding such methods.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Part I: Introduction -- General Introduction -- Models for Strongly Correlated Lattice Physics -- Part II: The Molecular Hubbard Hamiltonian -- Emergent Timescales in Entangled Quantum Dynamics of Ultracold Molecules in Optical Lattices -- Hyperfine Molecular Hubbard Hamiltonian -- Part III: The Fermi Resonance Hamiltonian -- Microscopic Model for Feshbach Interacting Fermions in an Optical Lattice with Arbitrary Scattering Length and Resonance Width -- Part IV: Matrix Product States -- Matrix Product States: Foundations -- Out-of-Equilibrium Dynamics with Matrix Product States -- The Infinite Size Variational Matrix Product State Algorithm -- Finite Temperature Matrix Product State Algorithms and Applications -- Part V: Open Source Code and Educational Materials -- Open Source Code Development -- Educational Materials -- Part VI: Conclusions and Appendices -- Conclusions and Suggestions for Future Research -- Appendix A: Documentation for ALPS V2.0 TEBD Code -- Appendix B: Educational Materials: A Gentle Introduction to Time Evolving Block Decimation (TEBD) -- Appendix C: Educational Materials: Introduction to MPS Algorithms.

This thesis investigates ultracold molecules as a resource for novel quantum many-body physics, in particular by utilizing their rich internal structure and strong, long-range dipole-dipole interactions. In addition, numerical methods based on matrix product states are analyzed in detail, and general algorithms for investigating the static and dynamic properties of essentially arbitrary one-dimensional quantum many-body systems are put forth. Finally, this thesis covers open-source implementations of matrix product state algorithms, as well as educational material designed to aid in the use of understanding such methods.

There are no comments on this title.

to post a comment.