Scientific Library of Tomsk State University

   E-catalog        

Image from Google Jackets
Normal view MARC view

Renormalization Group Analysis of Equilibrium and Non-equilibrium Charged Systems electronic resource by Evgeny Barkhudarov.

By: Barkhudarov, Evgeny [author.]Contributor(s): SpringerLink (Online service)Material type: TextTextSeries: Springer Theses, Recognizing Outstanding Ph.D. ResearchPublication details: Cham : Springer International Publishing : Imprint: Springer, 2014Description: XV, 163 p. 28 illus., 10 illus. in color. online resourceContent type: text Media type: computer Carrier type: online resourceISBN: 9783319061542Subject(s): physics | Mathematical physics | Quantum theory | Physics | Mathematical Methods in Physics | Fluid- and Aerodynamics | Elementary Particles, Quantum Field Theory | Mathematical Applications in the Physical SciencesDDC classification: 530.15 LOC classification: QC5.53Online resources: Click here to access online
Contents:
Part I Renormalization Group -- Historical Overview -- Wilson-Kadanoff Renormalization Group -- Part II Equilibrium Statistical Mechanics - Coulomb Gas -- D-dimensional Coulomb Gas -- Renormalization Group Analysis -- Part III Non-equilibrium Statistical Mechanics - Randomly Stirred Magnetohydrodynamics -- Turbulent Flows -- Recursion Relations and Fixed Point Analysis.
In: Springer eBooksSummary: This thesis has two parts, each based on an application of the renormalization-group (RG). The first part is an analysis of the d-dimensional Coulomb gas. The goal was to determine if the Wilson RG could provide input into particle-in-cell simulations in plasma physics, which are the main family of simulation methods used in this field. The role of the RG was to identify the effect of coarse-graining on the coupling constants as a function of the cut-offs. The RG calculation reproduced established results, but in a more concise form, and showed the effect of the cut-offs on the Debye screening length. The main part of the thesis is the application of the dynamic RG to turbulence in magnetohydrodynamics. After transformation to Elsasser variables, which is a symmetrisation of the original equations, the solution is presented as a functional integral, which includes stirring forces, their conjugates and functional Jacobian. The coarse-graining of the functional integral is represented as a diagrammatic expansion, followed by rescaling, and casting the results into differential equations for the analysis of RG trajectories. Detailed comparisons are made with the Navier-Stokes limit and with previous calculations for MHD.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Part I Renormalization Group -- Historical Overview -- Wilson-Kadanoff Renormalization Group -- Part II Equilibrium Statistical Mechanics - Coulomb Gas -- D-dimensional Coulomb Gas -- Renormalization Group Analysis -- Part III Non-equilibrium Statistical Mechanics - Randomly Stirred Magnetohydrodynamics -- Turbulent Flows -- Recursion Relations and Fixed Point Analysis.

This thesis has two parts, each based on an application of the renormalization-group (RG). The first part is an analysis of the d-dimensional Coulomb gas. The goal was to determine if the Wilson RG could provide input into particle-in-cell simulations in plasma physics, which are the main family of simulation methods used in this field. The role of the RG was to identify the effect of coarse-graining on the coupling constants as a function of the cut-offs. The RG calculation reproduced established results, but in a more concise form, and showed the effect of the cut-offs on the Debye screening length. The main part of the thesis is the application of the dynamic RG to turbulence in magnetohydrodynamics. After transformation to Elsasser variables, which is a symmetrisation of the original equations, the solution is presented as a functional integral, which includes stirring forces, their conjugates and functional Jacobian. The coarse-graining of the functional integral is represented as a diagrammatic expansion, followed by rescaling, and casting the results into differential equations for the analysis of RG trajectories. Detailed comparisons are made with the Navier-Stokes limit and with previous calculations for MHD.

There are no comments on this title.

to post a comment.