Scientific Library of Tomsk State University

   E-catalog        

Image from Google Jackets
Normal view MARC view

Tunneling Dynamics in Open Ultracold Bosonic Systems electronic resource Numerically Exact Dynamics – Analytical Models – Control Schemes / by Axel U. J. Lode.

By: Lode, Axel U. J [author.]Contributor(s): SpringerLink (Online service)Material type: TextTextSeries: Springer Theses, Recognizing Outstanding Ph.D. ResearchPublication details: Cham : Springer International Publishing : Imprint: Springer, 2015Description: XIX, 139 p. 43 illus. in color. online resourceContent type: text Media type: computer Carrier type: online resourceISBN: 9783319070858Subject(s): physics | Quantum Physics | Superconductivity | Superconductors | Quantum computers | Spintronics | Physics | Quantum Physics | Strongly Correlated Systems, Superconductivity | Quantum Information Technology, SpintronicsDDC classification: 530.12 LOC classification: QC173.96-174.52Online resources: Click here to access online
Contents:
Introduction -- Theory and Methods -- Benchmarks with Analytically Solvable Problems -- A Case Study with an attractive BEC: Comparison of Lattice and Continuous Space Theories -- Theoretical Considerations and Analytical Models on the Many-Body Physics of Tunneling Bosons -- Many-Boson Tunneling without a Threshold -- Many-Boson Tunneling with a Threshold -- Final Remarks.
In: Springer eBooksSummary: This thesis addresses the intriguing topic of the quantum tunnelling of many-body systems such as Bose-Einstein condensates. Despite the enormous amount of work on the tunneling of a single particle through a barrier, we know very little about how a system made of several or of many particles tunnels through a barrier to open space. The present work uses numerically exact solutions of the time-dependent many-boson Schrödinger equation to explore the rich physics of the tunneling to open space process in ultracold bosonic particles that are initially prepared as a Bose-Einstein condensate and subsequently allowed to tunnel through a barrier to open space. The many-body process is built up from concurrently occurring single particle processes that are characterized by different momenta. These momenta correspond to the chemical potentials of systems with decreasing particle number. The many-boson process exhibits exciting collective phenomena: the escaping particles  fragment and lose their coherence with the source and among each other, whilst correlations build up within the system. The detailed understanding of the many-body process is used to devise and test a scheme to control the final state, momentum distributions and even the correlation dynamics of the tunneling process.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Introduction -- Theory and Methods -- Benchmarks with Analytically Solvable Problems -- A Case Study with an attractive BEC: Comparison of Lattice and Continuous Space Theories -- Theoretical Considerations and Analytical Models on the Many-Body Physics of Tunneling Bosons -- Many-Boson Tunneling without a Threshold -- Many-Boson Tunneling with a Threshold -- Final Remarks.

This thesis addresses the intriguing topic of the quantum tunnelling of many-body systems such as Bose-Einstein condensates. Despite the enormous amount of work on the tunneling of a single particle through a barrier, we know very little about how a system made of several or of many particles tunnels through a barrier to open space. The present work uses numerically exact solutions of the time-dependent many-boson Schrödinger equation to explore the rich physics of the tunneling to open space process in ultracold bosonic particles that are initially prepared as a Bose-Einstein condensate and subsequently allowed to tunnel through a barrier to open space. The many-body process is built up from concurrently occurring single particle processes that are characterized by different momenta. These momenta correspond to the chemical potentials of systems with decreasing particle number. The many-boson process exhibits exciting collective phenomena: the escaping particles  fragment and lose their coherence with the source and among each other, whilst correlations build up within the system. The detailed understanding of the many-body process is used to devise and test a scheme to control the final state, momentum distributions and even the correlation dynamics of the tunneling process.

There are no comments on this title.

to post a comment.