Scientific Library of Tomsk State University

   E-catalog        

Image from Google Jackets
Normal view MARC view

Tomography of the Earth’s Crust: From Geophysical Sounding to Real-Time Monitoring electronic resource GEOTECHNOLOGIEN Science Report No. 21 / edited by Michael Weber, Ute Münch.

Contributor(s): Weber, Michael [editor.] | Münch, Ute [editor.] | SpringerLink (Online service)Material type: TextTextSeries: Advanced Technologies in Earth SciencesPublication details: Cham : Springer International Publishing : Imprint: Springer, 2014Description: X, 176 p. 84 illus., 28 illus. in color. online resourceContent type: text Media type: computer Carrier type: online resourceISBN: 9783319042053Subject(s): geography | geology | Physical geography | earth sciences | Geophysics/Geodesy | Geotechnical Engineering & Applied Earth Sciences | GeologyDDC classification: 550 | 526.1 LOC classification: QC801-809Online resources: Click here to access online
Contents:
4D Spectral Electrical Impedance Tomography (EIT) a diagnostic imaging tool for the characterization of subsurface structures and processes (4D-EIT) -- From Airborne Data Inversion to In-Depth Analysis (AIDA) -- Monitoring and Imaging based on Interferometric Concepts (MIIC) -- Mining Environments: Continuous Monitoring and Simultaneous Inversion (MINE) -- Three-dimensional Multi-Scale and Multi-Method Inversion to Determine the Electrical Conductivity Distribution of the Subsurface Using Parallel Computing Architectures (Multi-EM) -- Multi-Scale S-Wave Tomography for Exploration and Risk Assessment of Development Sites (MuSaWa) -- Seismic Observations for Underground Development (SOUND) -- Toolbox for Applied Seismic Tomography (TOAST) -- Tomographic Methods in Hydrogeology (TOMOME).
In: Springer eBooksSummary: The research work on the topic of ‘‘Tomography of the Earth’s Crust: From Geophysical Sounding to Real-Time Monitoring’’ has focused on the development of cross-scale multiparameter methods and their technological application together with the development of innovative field techniques. Seismic wave field inversion theory, diffusion and potential methods were developed and optimized with respect to cost and benefit aspects. This volume summarizes the scientific results of nine interdisciplinary joint projects funded by the German Federal Ministry of Education and Research in the framework of the Research and Development Program GEOTECHNOLOGIEN. Highlights and innovations presented cover many length scales and involve targets ranging from applications in the laboratory, to ground water surveys of heterogeneous aquifer, geotechnical applications like tunnel excavation, coal mine and CO2 monitoring and the imaging and monitoring of tectonic and societally relevant objects as active faults and volcanoes. To study these objects, the authors use the full spectrum of geophysical methods (ultrasonics, seismic and seismology, electromagnetics, gravity, and airborne) in combination with new methods like seismic interferometry, diffuse wave field theory and full-wave-form inversion in 3D and partially also in 4D. Geophysical Sounding to Real-Time Monitoring’’ has focused on the development of cross-scale multiparameter methods and their technological application together with the development of innovative field techniques. Seismic wave field inversion theory, diffusion and potential methods were developed and optimized with respect to cost and benefit aspects. This volume summarizes the scientific results of nine interdisciplinary joint projects funded by the German Federal Ministry of Education and Research in the framework of the Research and Development Program GEOTECHNOLOGIEN. Highlights and innovations presented cover many length scales and involve targets ranging from applications in the laboratory, to ground water surveys of heterogeneous aquifer, geotechnical applications like tunnel excavation, coal mine and CO2 monitoring and the imaging and monitoring of tectonic and societally relevant objects as active faults and volcanoes. To study these objects, the authors use the full spectrum of geophysical methods (ultrasonics, seismic and seismology, electromagnetics, gravity, and airborne) in combination with new methods like seismic interferometry, diffuse wave field theory and full-wave-form inversion in 3D and partially also in 4D. 2 monitoring and the imaging and monitoring of tectonic and societally relevant objects as active faults and volcanoes. To study these objects, the authors use the full spectrum of geophysical methods (ultrasonics, seismic and seismology, electromagnetics, gravity, and airborne) in combination with new methods like seismic interferometry, diffuse wave field theory and full-wave-form inversion in 3D and partially also in 4D.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

4D Spectral Electrical Impedance Tomography (EIT) a diagnostic imaging tool for the characterization of subsurface structures and processes (4D-EIT) -- From Airborne Data Inversion to In-Depth Analysis (AIDA) -- Monitoring and Imaging based on Interferometric Concepts (MIIC) -- Mining Environments: Continuous Monitoring and Simultaneous Inversion (MINE) -- Three-dimensional Multi-Scale and Multi-Method Inversion to Determine the Electrical Conductivity Distribution of the Subsurface Using Parallel Computing Architectures (Multi-EM) -- Multi-Scale S-Wave Tomography for Exploration and Risk Assessment of Development Sites (MuSaWa) -- Seismic Observations for Underground Development (SOUND) -- Toolbox for Applied Seismic Tomography (TOAST) -- Tomographic Methods in Hydrogeology (TOMOME).

The research work on the topic of ‘‘Tomography of the Earth’s Crust: From Geophysical Sounding to Real-Time Monitoring’’ has focused on the development of cross-scale multiparameter methods and their technological application together with the development of innovative field techniques. Seismic wave field inversion theory, diffusion and potential methods were developed and optimized with respect to cost and benefit aspects. This volume summarizes the scientific results of nine interdisciplinary joint projects funded by the German Federal Ministry of Education and Research in the framework of the Research and Development Program GEOTECHNOLOGIEN. Highlights and innovations presented cover many length scales and involve targets ranging from applications in the laboratory, to ground water surveys of heterogeneous aquifer, geotechnical applications like tunnel excavation, coal mine and CO2 monitoring and the imaging and monitoring of tectonic and societally relevant objects as active faults and volcanoes. To study these objects, the authors use the full spectrum of geophysical methods (ultrasonics, seismic and seismology, electromagnetics, gravity, and airborne) in combination with new methods like seismic interferometry, diffuse wave field theory and full-wave-form inversion in 3D and partially also in 4D. Geophysical Sounding to Real-Time Monitoring’’ has focused on the development of cross-scale multiparameter methods and their technological application together with the development of innovative field techniques. Seismic wave field inversion theory, diffusion and potential methods were developed and optimized with respect to cost and benefit aspects. This volume summarizes the scientific results of nine interdisciplinary joint projects funded by the German Federal Ministry of Education and Research in the framework of the Research and Development Program GEOTECHNOLOGIEN. Highlights and innovations presented cover many length scales and involve targets ranging from applications in the laboratory, to ground water surveys of heterogeneous aquifer, geotechnical applications like tunnel excavation, coal mine and CO2 monitoring and the imaging and monitoring of tectonic and societally relevant objects as active faults and volcanoes. To study these objects, the authors use the full spectrum of geophysical methods (ultrasonics, seismic and seismology, electromagnetics, gravity, and airborne) in combination with new methods like seismic interferometry, diffuse wave field theory and full-wave-form inversion in 3D and partially also in 4D. 2 monitoring and the imaging and monitoring of tectonic and societally relevant objects as active faults and volcanoes. To study these objects, the authors use the full spectrum of geophysical methods (ultrasonics, seismic and seismology, electromagnetics, gravity, and airborne) in combination with new methods like seismic interferometry, diffuse wave field theory and full-wave-form inversion in 3D and partially also in 4D.

There are no comments on this title.

to post a comment.